翻訳と辞書
Words near each other
・ Berkmeran
・ Berkner
・ Berkner (crater)
・ Berkner Bank
・ Berkner Island
・ Berknet
・ Berko
・ Berkoff (surname)
・ Berkoth
・ Berkovac
・ Berkovci
・ Berkovci, Križevci
・ Berkovic
・ Berkovica
・ Berkovich
Berkovich space
・ Berkovich tip
・ Berkovina
・ Berkovits
・ Berkovitsa
・ Berkovitsa Glacier
・ Berkovitsa Municipality
・ Berkovići
・ Berkovići (Rogatica)
・ Berkovo
・ Berkovski Prelogi
・ Berkowitz
・ Berkowo, Greater Poland Voivodeship
・ Berkowo, Warmian-Masurian Voivodeship
・ Berks


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Berkovich space : ウィキペディア英語版
Berkovich space
In mathematics, a Berkovich space, introduced by , is an analogue of an analytic space for ''p''-adic geometry, refining Tate's notion of a rigid analytic space.
==Berkovich spectrum==
A seminorm on a ring ''A'' is a non-constant function ''f''→|''f''| from ''A'' to the non-negative reals such that |0| = 0, |1| = 1, |''f'' + ''g''| ≤ |''f''| + |''g''|, |''fg''| ≤ |''f''||''g''|. It is called multiplicative if |''fg''| = |''f''||''g''| and is called a norm if |''f''| = 0 implies ''f'' = 0.
If ''A'' is a normed ring with norm ''f'' → ||''f''|| then the Berkovich spectrum of ''A'' is the set of multiplicative seminorms || on ''A'' that are bounded by the norm of ''A''. The Berkovich spectrum is topologized with the weakest topology such that for any ''f'' in ''A'' the map taking || to |''f''| is continuous..
The Berkovich spectrum of a normed ring ''A'' is non-empty if ''A'' is non-zero and is compact if ''A'' is complete.
The spectral radius ρ(''f'') = lim |''f''''n''|1/''n'' of ''f'' is equal to sup''x''|''f''|''x''

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Berkovich space」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.